Flutter Impeller
matrix.h
Go to the documentation of this file.
1 // Copyright 2013 The Flutter Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef FLUTTER_IMPELLER_GEOMETRY_MATRIX_H_
6 #define FLUTTER_IMPELLER_GEOMETRY_MATRIX_H_
7 
8 #include <cmath>
9 #include <iomanip>
10 #include <limits>
11 #include <optional>
12 #include <ostream>
13 #include <utility>
14 
20 #include "impeller/geometry/size.h"
22 
23 namespace impeller {
24 
25 //------------------------------------------------------------------------------
26 /// @brief A 4x4 matrix using column-major storage.
27 ///
28 /// Utility methods that need to make assumptions about normalized
29 /// device coordinates must use the following convention:
30 /// * Left-handed coordinate system. Positive rotation is
31 /// clockwise about axis of rotation.
32 /// * Lower left corner is -1.0f, -1.0.
33 /// * Upper right corner is 1.0f, 1.0.
34 /// * Visible z-space is from 0.0 to 1.0.
35 /// * This is NOT the same as OpenGL! Be careful.
36 /// * NDC origin is at (0.0f, 0.0f, 0.5f).
37 struct Matrix {
38  union {
39  Scalar m[16];
40  Scalar e[4][4];
42  };
43 
44  //----------------------------------------------------------------------------
45  /// Constructs a default identity matrix.
46  ///
47  constexpr Matrix()
48  // clang-format off
49  : vec{ Vector4(1.0f, 0.0f, 0.0f, 0.0f),
50  Vector4(0.0f, 1.0f, 0.0f, 0.0f),
51  Vector4(0.0f, 0.0f, 1.0f, 0.0f),
52  Vector4(0.0f, 0.0f, 0.0f, 1.0f)} {}
53  // clang-format on
54 
55  // clang-format off
56  constexpr Matrix(Scalar m0, Scalar m1, Scalar m2, Scalar m3,
57  Scalar m4, Scalar m5, Scalar m6, Scalar m7,
58  Scalar m8, Scalar m9, Scalar m10, Scalar m11,
59  Scalar m12, Scalar m13, Scalar m14, Scalar m15)
60  : vec{Vector4(m0, m1, m2, m3),
61  Vector4(m4, m5, m6, m7),
62  Vector4(m8, m9, m10, m11),
63  Vector4(m12, m13, m14, m15)} {}
64  // clang-format on
65 
66  explicit Matrix(const MatrixDecomposition& decomposition);
67 
68  // clang-format off
69  static constexpr Matrix MakeColumn(
70  Scalar m0, Scalar m1, Scalar m2, Scalar m3,
71  Scalar m4, Scalar m5, Scalar m6, Scalar m7,
72  Scalar m8, Scalar m9, Scalar m10, Scalar m11,
73  Scalar m12, Scalar m13, Scalar m14, Scalar m15){
74  return Matrix(m0, m1, m2, m3,
75  m4, m5, m6, m7,
76  m8, m9, m10, m11,
77  m12, m13, m14, m15);
78 
79  }
80  // clang-format on
81 
82  // clang-format off
83  static constexpr Matrix MakeRow(
84  Scalar m0, Scalar m1, Scalar m2, Scalar m3,
85  Scalar m4, Scalar m5, Scalar m6, Scalar m7,
86  Scalar m8, Scalar m9, Scalar m10, Scalar m11,
87  Scalar m12, Scalar m13, Scalar m14, Scalar m15){
88  return Matrix(m0, m4, m8, m12,
89  m1, m5, m9, m13,
90  m2, m6, m10, m14,
91  m3, m7, m11, m15);
92  }
93  // clang-format on
94 
95  static constexpr Matrix MakeTranslation(const Vector3& t) {
96  // clang-format off
97  return Matrix(1.0f, 0.0f, 0.0f, 0.0f,
98  0.0f, 1.0f, 0.0f, 0.0f,
99  0.0f, 0.0f, 1.0f, 0.0f,
100  t.x, t.y, t.z, 1.0f);
101  // clang-format on
102  }
103 
104  static constexpr Matrix MakeScale(const Vector3& s) {
105  // clang-format off
106  return Matrix(s.x, 0.0f, 0.0f, 0.0f,
107  0.0f, s.y, 0.0f, 0.0f,
108  0.0f, 0.0f, s.z, 0.0f,
109  0.0f, 0.0f, 0.0f, 1.0f);
110  // clang-format on
111  }
112 
113  static constexpr Matrix MakeTranslateScale(const Vector3& s,
114  const Vector3& t) {
115  // clang-format off
116  return Matrix(s.x, 0.0f, 0.0f, 0.0f,
117  0.0f, s.y, 0.0f, 0.0f,
118  0.0f, 0.0f, s.z, 0.0f,
119  t.x , t.y, t.z, 1.0f);
120  // clang-format on
121  }
122 
123  static constexpr Matrix MakeScale(const Vector2& s) {
124  return MakeScale(Vector3(s.x, s.y, 1.0f));
125  }
126 
127  static constexpr Matrix MakeSkew(Scalar sx, Scalar sy) {
128  // clang-format off
129  return Matrix(1.0f, sy , 0.0f, 0.0f,
130  sx , 1.0f, 0.0f, 0.0f,
131  0.0f, 0.0f, 1.0f, 0.0f,
132  0.0f, 0.0f, 0.0f, 1.0f);
133  // clang-format on
134  }
135 
137  // clang-format off
138  return Matrix(
139  1.0f - 2.0f * q.y * q.y - 2.0f * q.z * q.z,
140  2.0f * q.x * q.y + 2.0f * q.z * q.w,
141  2.0f * q.x * q.z - 2.0f * q.y * q.w,
142  0.0f,
143 
144  2.0f * q.x * q.y - 2.0f * q.z * q.w,
145  1.0f - 2.0f * q.x * q.x - 2.0f * q.z * q.z,
146  2.0f * q.y * q.z + 2.0f * q.x * q.w,
147  0.0f,
148 
149  2.0f * q.x * q.z + 2.0f * q.y * q.w,
150  2.0f * q.y * q.z - 2.0f * q.x * q.w,
151  1.0f - 2.0f * q.x * q.x - 2.0f * q.y * q.y,
152  0.0f,
153 
154  0.0f,
155  0.0f,
156  0.0f,
157  1.0f);
158  // clang-format on
159  }
160 
161  static Matrix MakeRotation(Radians radians, const Vector4& r) {
162  const Vector4 v = r.Normalize();
163 
164  const Vector2 cos_sin = CosSin(radians);
165  const Scalar cosine = cos_sin.x;
166  const Scalar cosp = 1.0f - cosine;
167  const Scalar sine = cos_sin.y;
168 
169  // clang-format off
170  return Matrix(
171  cosine + cosp * v.x * v.x,
172  cosp * v.x * v.y + v.z * sine,
173  cosp * v.x * v.z - v.y * sine,
174  0.0f,
175 
176  cosp * v.x * v.y - v.z * sine,
177  cosine + cosp * v.y * v.y,
178  cosp * v.y * v.z + v.x * sine,
179  0.0f,
180 
181  cosp * v.x * v.z + v.y * sine,
182  cosp * v.y * v.z - v.x * sine,
183  cosine + cosp * v.z * v.z,
184  0.0f,
185 
186  0.0f,
187  0.0f,
188  0.0f,
189  1.0f);
190  // clang-format on
191  }
192 
194  const Vector2 cos_sin = CosSin(r);
195  const Scalar cosine = cos_sin.x;
196  const Scalar sine = cos_sin.y;
197 
198  // clang-format off
199  return Matrix(
200  1.0f, 0.0f, 0.0f, 0.0f,
201  0.0f, cosine, sine, 0.0f,
202  0.0f, -sine, cosine, 0.0f,
203  0.0f, 0.0f, 0.0f, 1.0f
204  );
205  // clang-format on
206  }
207 
209  const Vector2 cos_sin = CosSin(r);
210  const Scalar cosine = cos_sin.x;
211  const Scalar sine = cos_sin.y;
212 
213  // clang-format off
214  return Matrix(
215  cosine, 0.0f, -sine, 0.0f,
216  0.0f, 1.0f, 0.0f, 0.0f,
217  sine, 0.0f, cosine, 0.0f,
218  0.0f, 0.0f, 0.0f, 1.0f
219  );
220  // clang-format on
221  }
222 
224  const Vector2 cos_sin = CosSin(r);
225  const Scalar cosine = cos_sin.x;
226  const Scalar sine = cos_sin.y;
227 
228  // clang-format off
229  return Matrix (
230  cosine, sine, 0.0f, 0.0f,
231  -sine, cosine, 0.0f, 0.0f,
232  0.0f, 0.0f, 1.0f, 0.0f,
233  0.0f, 0.0f, 0.0f, 1.0
234  );
235  // clang-format on
236  }
237 
238  /// The Matrix without its `w` components (without translation).
239  constexpr Matrix Basis() const {
240  // clang-format off
241  return Matrix(
242  m[0], m[1], m[2], 0.0f,
243  m[4], m[5], m[6], 0.0f,
244  m[8], m[9], m[10], 0.0f,
245  0.0f, 0.0f, 0.0f, 1.0
246  );
247  // clang-format on
248  }
249 
250  // Converts the second row/col to identity to make this an equivalent
251  // to a Skia 3x3 Matrix.
252  constexpr Matrix To3x3() const {
253  // clang-format off
254  return Matrix(
255  m[0], m[1], 0, m[3],
256  m[4], m[5], 0, m[7],
257  0, 0, 1, 0,
258  m[12], m[13], 0, m[15]
259  );
260  // clang-format on
261  }
262 
263  constexpr Matrix Translate(const Vector3& t) const {
264  // clang-format off
265  return Matrix(m[0], m[1], m[2], m[3],
266  m[4], m[5], m[6], m[7],
267  m[8], m[9], m[10], m[11],
268  m[0] * t.x + m[4] * t.y + m[8] * t.z + m[12],
269  m[1] * t.x + m[5] * t.y + m[9] * t.z + m[13],
270  m[2] * t.x + m[6] * t.y + m[10] * t.z + m[14],
271  m[3] * t.x + m[7] * t.y + m[11] * t.z + m[15]);
272  // clang-format on
273  }
274 
275  constexpr Matrix Scale(const Vector3& s) const {
276  // clang-format off
277  return Matrix(m[0] * s.x, m[1] * s.x, m[2] * s.x, m[3] * s.x,
278  m[4] * s.y, m[5] * s.y, m[6] * s.y, m[7] * s.y,
279  m[8] * s.z, m[9] * s.z, m[10] * s.z, m[11] * s.z,
280  m[12] , m[13] , m[14] , m[15] );
281  // clang-format on
282  }
283 
284  constexpr Matrix Multiply(const Matrix& o) const {
285  // clang-format off
286  return Matrix(
287  m[0] * o.m[0] + m[4] * o.m[1] + m[8] * o.m[2] + m[12] * o.m[3],
288  m[1] * o.m[0] + m[5] * o.m[1] + m[9] * o.m[2] + m[13] * o.m[3],
289  m[2] * o.m[0] + m[6] * o.m[1] + m[10] * o.m[2] + m[14] * o.m[3],
290  m[3] * o.m[0] + m[7] * o.m[1] + m[11] * o.m[2] + m[15] * o.m[3],
291  m[0] * o.m[4] + m[4] * o.m[5] + m[8] * o.m[6] + m[12] * o.m[7],
292  m[1] * o.m[4] + m[5] * o.m[5] + m[9] * o.m[6] + m[13] * o.m[7],
293  m[2] * o.m[4] + m[6] * o.m[5] + m[10] * o.m[6] + m[14] * o.m[7],
294  m[3] * o.m[4] + m[7] * o.m[5] + m[11] * o.m[6] + m[15] * o.m[7],
295  m[0] * o.m[8] + m[4] * o.m[9] + m[8] * o.m[10] + m[12] * o.m[11],
296  m[1] * o.m[8] + m[5] * o.m[9] + m[9] * o.m[10] + m[13] * o.m[11],
297  m[2] * o.m[8] + m[6] * o.m[9] + m[10] * o.m[10] + m[14] * o.m[11],
298  m[3] * o.m[8] + m[7] * o.m[9] + m[11] * o.m[10] + m[15] * o.m[11],
299  m[0] * o.m[12] + m[4] * o.m[13] + m[8] * o.m[14] + m[12] * o.m[15],
300  m[1] * o.m[12] + m[5] * o.m[13] + m[9] * o.m[14] + m[13] * o.m[15],
301  m[2] * o.m[12] + m[6] * o.m[13] + m[10] * o.m[14] + m[14] * o.m[15],
302  m[3] * o.m[12] + m[7] * o.m[13] + m[11] * o.m[14] + m[15] * o.m[15]);
303  // clang-format on
304  }
305 
306  constexpr Matrix Transpose() const {
307  // clang-format off
308  return {
309  m[0], m[4], m[8], m[12],
310  m[1], m[5], m[9], m[13],
311  m[2], m[6], m[10], m[14],
312  m[3], m[7], m[11], m[15],
313  };
314  // clang-format on
315  }
316 
317  Matrix Invert() const;
318 
319  Scalar GetDeterminant() const;
320 
321  bool IsInvertible() const { return GetDeterminant() != 0; }
322 
323  /// @brief Return the maximum scale applied specifically to either the
324  /// X axis or Y axis unit vectors (the bases). The matrix might
325  /// lengthen a non-axis-aligned vector by more than this value.
326  ///
327  /// @see |GetMaxScale2D|
328  inline Scalar GetMaxBasisLengthXY() const {
329  // The full basis computation requires computing the squared scaling factor
330  // for translate/scale only matrices. This substantially limits the range of
331  // precision for small and large scales. Instead, check for the common cases
332  // and directly return the max scaling factor.
333  if (e[0][1] == 0 && e[1][0] == 0) {
334  return std::max(std::abs(e[0][0]), std::abs(e[1][1]));
335  }
336  return std::sqrt(std::max(e[0][0] * e[0][0] + e[0][1] * e[0][1],
337  e[1][0] * e[1][0] + e[1][1] * e[1][1]));
338  }
339 
340  /// @brief Return the smaller of the two non-negative scales that will
341  /// be applied to 2D coordinates by this matrix. If the matrix
342  /// has perspective components, the method will return a nullopt.
343  ///
344  /// Note that negative scale factors really represent a positive scale
345  /// factor with a flip, so the absolute value (the positive scale factor)
346  /// is returned instead so that the results can be directly applied to
347  /// rendering calculations to compute the potential size of an operation.
348  ///
349  /// This method differs from the "basis length" methods in that those
350  /// methods answer the question "how much does this transform stretch
351  /// perfectly horizontal or vertical source vectors, whereas this method
352  /// can answer "what's the smallest scale applied to any vector regardless
353  /// of direction".
354  ///
355  /// @see |GetScales2D|
356  std::optional<Scalar> GetMinScale2D() const {
357  auto scales = GetScales2D();
358  if (!scales.has_value()) {
359  return std::nullopt;
360  }
361  return std::min(scales->first, scales->second);
362  }
363 
364  /// @brief Return the smaller of the two non-negative scales that will
365  /// be applied to 2D coordinates by this matrix. If the matrix
366  /// has perspective components, the method will return a nullopt.
367  ///
368  /// Note that negative scale factors really represent a positive scale
369  /// factor with a flip, so the absolute value (the positive scale factor)
370  /// is returned instead so that the results can be directly applied to
371  /// rendering calculations to compute the potential size of an operation.
372  ///
373  /// This method differs from the "basis length" methods in that those
374  /// methods answer the question "how much does this transform stretch
375  /// perfectly horizontal or vertical source vectors, whereas this method
376  /// can answer "what's the largest scale applied to any vector regardless
377  /// of direction".
378  ///
379  /// @see |GetScales2D|
380  std::optional<Scalar> GetMaxScale2D() const {
381  auto scales = GetScales2D();
382  if (!scales.has_value()) {
383  return std::nullopt;
384  }
385  return std::max(scales->first, scales->second);
386  }
387 
388  constexpr Vector3 GetBasisX() const { return Vector3(m[0], m[1], m[2]); }
389 
390  constexpr Vector3 GetBasisY() const { return Vector3(m[4], m[5], m[6]); }
391 
392  constexpr Vector3 GetBasisZ() const { return Vector3(m[8], m[9], m[10]); }
393 
394  inline Vector3 GetScale() const {
395  return Vector3(GetBasisX().GetLength(), GetBasisY().GetLength(),
396  GetBasisZ().GetLength());
397  }
398 
399  inline Scalar GetDirectionScale(Vector3 direction) const {
400  return 1.0f / (this->Basis().Invert() * direction.Normalize()).GetLength() *
401  direction.GetLength();
402  }
403 
404  inline bool IsFinite() const {
405  return vec[0].IsFinite() && vec[1].IsFinite() && vec[2].IsFinite() &&
406  vec[3].IsFinite();
407  }
408 
409  constexpr bool IsAffine() const {
410  return (m[2] == 0 && m[3] == 0 && m[6] == 0 && m[7] == 0 && m[8] == 0 &&
411  m[9] == 0 && m[10] == 1 && m[11] == 0 && m[14] == 0 && m[15] == 1);
412  }
413 
414  constexpr bool HasPerspective2D() const {
415  return m[3] != 0 || m[7] != 0 || m[15] != 1;
416  }
417 
418  constexpr bool HasPerspective() const {
419  return m[3] != 0 || m[7] != 0 || m[11] != 0 || m[15] != 1;
420  }
421 
422  constexpr bool HasTranslation() const { return m[12] != 0 || m[13] != 0; }
423 
424  constexpr bool IsAligned2D(Scalar tolerance = 0) const {
425  if (HasPerspective2D()) {
426  return false;
427  }
428  if (ScalarNearlyZero(m[1], tolerance) &&
429  ScalarNearlyZero(m[4], tolerance)) {
430  return true;
431  }
432  if (ScalarNearlyZero(m[0], tolerance) &&
433  ScalarNearlyZero(m[5], tolerance)) {
434  return true;
435  }
436  return false;
437  }
438 
439  constexpr bool IsAligned(Scalar tolerance = 0) const {
440  if (HasPerspective()) {
441  return false;
442  }
443  int v[] = {!ScalarNearlyZero(m[0], tolerance), //
444  !ScalarNearlyZero(m[1], tolerance), //
445  !ScalarNearlyZero(m[2], tolerance), //
446  !ScalarNearlyZero(m[4], tolerance), //
447  !ScalarNearlyZero(m[5], tolerance), //
448  !ScalarNearlyZero(m[6], tolerance), //
449  !ScalarNearlyZero(m[8], tolerance), //
450  !ScalarNearlyZero(m[9], tolerance), //
451  !ScalarNearlyZero(m[10], tolerance)};
452  // Check if all three basis vectors are aligned to an axis.
453  if (v[0] + v[1] + v[2] != 1 || //
454  v[3] + v[4] + v[5] != 1 || //
455  v[6] + v[7] + v[8] != 1) {
456  return false;
457  }
458  // Ensure that none of the basis vectors overlap.
459  if (v[0] + v[3] + v[6] != 1 || //
460  v[1] + v[4] + v[7] != 1 || //
461  v[2] + v[5] + v[8] != 1) {
462  return false;
463  }
464  return true;
465  }
466 
467  constexpr bool IsIdentity() const {
468  return (
469  // clang-format off
470  m[0] == 1.0f && m[1] == 0.0f && m[2] == 0.0f && m[3] == 0.0f &&
471  m[4] == 0.0f && m[5] == 1.0f && m[6] == 0.0f && m[7] == 0.0f &&
472  m[8] == 0.0f && m[9] == 0.0f && m[10] == 1.0f && m[11] == 0.0f &&
473  m[12] == 0.0f && m[13] == 0.0f && m[14] == 0.0f && m[15] == 1.0f
474  // clang-format on
475  );
476  }
477 
478  /// @brief Returns true if the matrix has no entries other than translation
479  /// components. Note that an identity matrix meets this criteria.
480  constexpr bool IsTranslationOnly() const {
481  return (
482  // clang-format off
483  m[0] == 1.0 && m[1] == 0.0 && m[2] == 0.0 && m[3] == 0.0 &&
484  m[4] == 0.0 && m[5] == 1.0 && m[6] == 0.0 && m[7] == 0.0 &&
485  m[8] == 0.0 && m[9] == 0.0 && m[10] == 1.0 && m[11] == 0.0 &&
486  m[15] == 1.0
487  // clang-format on
488  );
489  }
490 
491  /// @brief Returns true if the matrix has a scale-only basis and is
492  /// non-projective. Note that an identity matrix meets this criteria.
493  constexpr bool IsTranslationScaleOnly() const {
494  return (
495  // clang-format off
496  m[0] != 0.0 && m[1] == 0.0 && m[2] == 0.0 && m[3] == 0.0 &&
497  m[4] == 0.0 && m[5] != 0.0 && m[6] == 0.0 && m[7] == 0.0 &&
498  m[8] == 0.0 && m[9] == 0.0 && m[10] != 0.0 && m[11] == 0.0 &&
499  m[15] == 1.0
500  // clang-format on
501  );
502  }
503 
504  std::optional<MatrixDecomposition> Decompose() const;
505 
506  /// @brief Compute the two non-negative scales applied by this matrix to
507  /// 2D coordinates and return them as an optional pair of Scalar
508  /// values in any order. If the matrix has perspective elements,
509  /// this method will return a nullopt.
510  ///
511  /// Note that negative scale factors really represent a positive scale
512  /// factor with a flip, so the absolute value (the positive scale factor)
513  /// is returned instead so that the results can be directly applied to
514  /// rendering calculations to compute the potential size of an operation.
515  ///
516  /// @see |GetMinScale2D|
517  /// @see |GetMaxScale2D|
518  std::optional<std::pair<Scalar, Scalar>> GetScales2D() const;
519 
520  bool Equals(const Matrix& matrix, Scalar epsilon = 1e-5f) const {
521  const Scalar* a = m;
522  const Scalar* b = matrix.m;
523  return ScalarNearlyEqual(a[0], b[0], epsilon) &&
524  ScalarNearlyEqual(a[1], b[1], epsilon) &&
525  ScalarNearlyEqual(a[2], b[2], epsilon) &&
526  ScalarNearlyEqual(a[3], b[3], epsilon) &&
527  ScalarNearlyEqual(a[4], b[4], epsilon) &&
528  ScalarNearlyEqual(a[5], b[5], epsilon) &&
529  ScalarNearlyEqual(a[6], b[6], epsilon) &&
530  ScalarNearlyEqual(a[7], b[7], epsilon) &&
531  ScalarNearlyEqual(a[8], b[8], epsilon) &&
532  ScalarNearlyEqual(a[9], b[9], epsilon) &&
533  ScalarNearlyEqual(a[10], b[10], epsilon) &&
534  ScalarNearlyEqual(a[11], b[11], epsilon) &&
535  ScalarNearlyEqual(a[12], b[12], epsilon) &&
536  ScalarNearlyEqual(a[13], b[13], epsilon) &&
537  ScalarNearlyEqual(a[14], b[14], epsilon) &&
538  ScalarNearlyEqual(a[15], b[15], epsilon);
539  }
540 
541  constexpr bool operator==(const Matrix& m) const {
542  // clang-format off
543  return vec[0] == m.vec[0]
544  && vec[1] == m.vec[1]
545  && vec[2] == m.vec[2]
546  && vec[3] == m.vec[3];
547  // clang-format on
548  }
549 
550  constexpr bool operator!=(const Matrix& m) const {
551  // clang-format off
552  return vec[0] != m.vec[0]
553  || vec[1] != m.vec[1]
554  || vec[2] != m.vec[2]
555  || vec[3] != m.vec[3];
556  // clang-format on
557  }
558 
559  Matrix operator+(const Vector3& t) const { return Translate(t); }
560 
561  Matrix operator-(const Vector3& t) const { return Translate(-t); }
562 
563  Matrix operator*(const Matrix& m) const { return Multiply(m); }
564 
565  Matrix operator+(const Matrix& m) const;
566 
567  constexpr Vector4 operator*(const Vector4& v) const {
568  return Vector4(v.x * m[0] + v.y * m[4] + v.z * m[8] + v.w * m[12],
569  v.x * m[1] + v.y * m[5] + v.z * m[9] + v.w * m[13],
570  v.x * m[2] + v.y * m[6] + v.z * m[10] + v.w * m[14],
571  v.x * m[3] + v.y * m[7] + v.z * m[11] + v.w * m[15]);
572  }
573 
574  constexpr Vector3 operator*(const Vector3& v) const {
575  Scalar w = v.x * m[3] + v.y * m[7] + v.z * m[11] + m[15];
576  Vector3 result(v.x * m[0] + v.y * m[4] + v.z * m[8] + m[12],
577  v.x * m[1] + v.y * m[5] + v.z * m[9] + m[13],
578  v.x * m[2] + v.y * m[6] + v.z * m[10] + m[14]);
579 
580  // This is Skia's behavior, but it may be reasonable to allow UB for the w=0
581  // case.
582  if (w) {
583  w = 1 / w;
584  }
585  return result * w;
586  }
587 
588  constexpr Point operator*(const Point& v) const {
589  Scalar w = v.x * m[3] + v.y * m[7] + m[15];
590  Point result(v.x * m[0] + v.y * m[4] + m[12],
591  v.x * m[1] + v.y * m[5] + m[13]);
592 
593  // This is Skia's behavior, but it may be reasonable to allow UB for the w=0
594  // case.
595  if (w) {
596  w = 1 / w;
597  }
598  return result * w;
599  }
600 
601  constexpr Vector3 TransformHomogenous(const Point& v) const {
602  return Vector3(v.x * m[0] + v.y * m[4] + m[12],
603  v.x * m[1] + v.y * m[5] + m[13],
604  v.x * m[3] + v.y * m[7] + m[15]);
605  }
606 
607  constexpr Vector4 TransformDirection(const Vector4& v) const {
608  return Vector4(v.x * m[0] + v.y * m[4] + v.z * m[8],
609  v.x * m[1] + v.y * m[5] + v.z * m[9],
610  v.x * m[2] + v.y * m[6] + v.z * m[10], v.w);
611  }
612 
613  constexpr Vector3 TransformDirection(const Vector3& v) const {
614  return Vector3(v.x * m[0] + v.y * m[4] + v.z * m[8],
615  v.x * m[1] + v.y * m[5] + v.z * m[9],
616  v.x * m[2] + v.y * m[6] + v.z * m[10]);
617  }
618 
619  constexpr Vector2 TransformDirection(const Vector2& v) const {
620  return Vector2(v.x * m[0] + v.y * m[4], v.x * m[1] + v.y * m[5]);
621  }
622 
623  constexpr Quad Transform(const Quad& quad) const {
624  return {
625  *this * quad[0],
626  *this * quad[1],
627  *this * quad[2],
628  *this * quad[3],
629  };
630  }
631 
632  template <class T>
633  static constexpr Matrix MakeOrthographic(TSize<T> size) {
634  // Per assumptions about NDC documented above.
635  const auto scale =
636  MakeScale({2.0f / static_cast<Scalar>(size.width),
637  -2.0f / static_cast<Scalar>(size.height), 0.0f});
638  const auto translate = MakeTranslation({-1.0f, 1.0f, 0.5f});
639  return translate * scale;
640  }
641 
642  static inline Matrix MakePerspective(Radians fov_y,
643  Scalar aspect_ratio,
644  Scalar z_near,
645  Scalar z_far) {
646  Scalar height = std::tan(fov_y.radians * 0.5f);
647  Scalar width = height * aspect_ratio;
648 
649  // clang-format off
650  return {
651  1.0f / width, 0.0f, 0.0f, 0.0f,
652  0.0f, 1.0f / height, 0.0f, 0.0f,
653  0.0f, 0.0f, z_far / (z_far - z_near), 1.0f,
654  0.0f, 0.0f, -(z_far * z_near) / (z_far - z_near), 0.0f,
655  };
656  // clang-format on
657  }
658 
659  template <class T>
660  static constexpr Matrix MakePerspective(Radians fov_y,
661  TSize<T> size,
662  Scalar z_near,
663  Scalar z_far) {
664  return MakePerspective(fov_y, static_cast<Scalar>(size.width) / size.height,
665  z_near, z_far);
666  }
667 
668  static inline Matrix MakeLookAt(Vector3 position,
669  Vector3 target,
670  Vector3 up) {
671  Vector3 forward = (target - position).Normalize();
672  Vector3 right = up.Cross(forward);
673  up = forward.Cross(right);
674 
675  // clang-format off
676  return {
677  right.x, up.x, forward.x, 0.0f,
678  right.y, up.y, forward.y, 0.0f,
679  right.z, up.z, forward.z, 0.0f,
680  -right.Dot(position), -up.Dot(position), -forward.Dot(position), 1.0f
681  };
682  // clang-format on
683  }
684 
685  static inline Vector2 CosSin(Radians radians) {
686  // The precision of a float around 1.0 is much lower than it is
687  // around 0.0, so we end up with cases on quadrant rotations where
688  // we get a +/-1.0 for one of the values and a non-zero value for
689  // the other. This happens around quadrant rotations which makes it
690  // especially common and results in unclean quadrant rotation
691  // matrices which do not return true from |IsAligned[2D]| even
692  // though that is exactly where you need them to exhibit that property.
693  // It also injects small floating point mantissa errors into the
694  // matrices whenever you concatenate them with a quadrant rotation.
695  //
696  // This issue is also exacerbated by the fact that, in radians, the
697  // angles for quadrant rotations are irrational numbers. The measuring
698  // error for representing 90 degree multiples is small enough that
699  // either sin or cos will return a value near +/-1.0, but not small
700  // enough that the other value will be a clean 0.0.
701  //
702  // Some geometry packages simply discard very small numbers from
703  // sin/cos, but the following approach specifically targets just the
704  // area around a quadrant rotation (where either the sin or cos are
705  // measuring as +/-1.0) for symmetry of precision.
706 
707  Scalar sin = std::sin(radians.radians);
708  if (std::abs(sin) == 1.0f) {
709  // 90 or 270 degrees (mod 360)
710  return {0.0f, sin};
711  } else {
712  Scalar cos = std::cos(radians.radians);
713  if (std::abs(cos) == 1.0f) {
714  // 0 or 180 degrees (mod 360)
715  return {cos, 0.0f};
716  }
717  return {cos, sin};
718  }
719  }
720 };
721 
722 static_assert(sizeof(struct Matrix) == sizeof(Scalar) * 16,
723  "The matrix must be of consistent size.");
724 
725 } // namespace impeller
726 
727 namespace std {
728 inline std::ostream& operator<<(std::ostream& out, const impeller::Matrix& m) {
729  out << "(" << std::endl << std::fixed;
730  for (size_t i = 0; i < 4u; i++) {
731  for (size_t j = 0; j < 4u; j++) {
732  out << std::setw(15) << m.e[j][i] << ",";
733  }
734  out << std::endl;
735  }
736  out << ")";
737  return out;
738 }
739 
740 } // namespace std
741 
742 #endif // FLUTTER_IMPELLER_GEOMETRY_MATRIX_H_
Point Vector2
Definition: point.h:331
float Scalar
Definition: scalar.h:19
constexpr bool ScalarNearlyZero(Scalar x, Scalar tolerance=kEhCloseEnough)
Definition: scalar.h:31
constexpr bool ScalarNearlyEqual(Scalar x, Scalar y, Scalar tolerance=kEhCloseEnough)
Definition: scalar.h:36
std::array< Point, 4 > Quad
Definition: point.h:332
Definition: comparable.h:95
std::ostream & operator<<(std::ostream &out, const impeller::Arc &a)
Definition: arc.h:141
A 4x4 matrix using column-major storage.
Definition: matrix.h:37
constexpr bool IsTranslationOnly() const
Returns true if the matrix has no entries other than translation components. Note that an identity ma...
Definition: matrix.h:480
static constexpr Matrix MakeOrthographic(TSize< T > size)
Definition: matrix.h:633
constexpr Matrix Multiply(const Matrix &o) const
Definition: matrix.h:284
constexpr bool IsAffine() const
Definition: matrix.h:409
static constexpr Matrix MakeTranslation(const Vector3 &t)
Definition: matrix.h:95
constexpr Vector3 GetBasisY() const
Definition: matrix.h:390
constexpr Matrix()
Definition: matrix.h:47
constexpr bool IsIdentity() const
Definition: matrix.h:467
constexpr bool IsTranslationScaleOnly() const
Returns true if the matrix has a scale-only basis and is non-projective. Note that an identity matrix...
Definition: matrix.h:493
Scalar m[16]
Definition: matrix.h:39
constexpr bool HasTranslation() const
Definition: matrix.h:422
constexpr Matrix Translate(const Vector3 &t) const
Definition: matrix.h:263
std::optional< Scalar > GetMinScale2D() const
Return the smaller of the two non-negative scales that will be applied to 2D coordinates by this matr...
Definition: matrix.h:356
bool IsInvertible() const
Definition: matrix.h:321
constexpr Vector2 TransformDirection(const Vector2 &v) const
Definition: matrix.h:619
static constexpr Matrix MakeScale(const Vector2 &s)
Definition: matrix.h:123
Matrix operator+(const Vector3 &t) const
Definition: matrix.h:559
Scalar GetDirectionScale(Vector3 direction) const
Definition: matrix.h:399
constexpr Matrix Basis() const
The Matrix without its w components (without translation).
Definition: matrix.h:239
constexpr Matrix(Scalar m0, Scalar m1, Scalar m2, Scalar m3, Scalar m4, Scalar m5, Scalar m6, Scalar m7, Scalar m8, Scalar m9, Scalar m10, Scalar m11, Scalar m12, Scalar m13, Scalar m14, Scalar m15)
Definition: matrix.h:56
Matrix operator*(const Matrix &m) const
Definition: matrix.h:563
constexpr bool IsAligned(Scalar tolerance=0) const
Definition: matrix.h:439
Matrix Invert() const
Definition: matrix.cc:99
static constexpr Matrix MakeColumn(Scalar m0, Scalar m1, Scalar m2, Scalar m3, Scalar m4, Scalar m5, Scalar m6, Scalar m7, Scalar m8, Scalar m9, Scalar m10, Scalar m11, Scalar m12, Scalar m13, Scalar m14, Scalar m15)
Definition: matrix.h:69
static Matrix MakeRotationY(Radians r)
Definition: matrix.h:208
constexpr Vector3 GetBasisZ() const
Definition: matrix.h:392
Vector4 vec[4]
Definition: matrix.h:41
std::optional< MatrixDecomposition > Decompose() const
Definition: matrix.cc:202
constexpr bool HasPerspective2D() const
Definition: matrix.h:414
bool IsFinite() const
Definition: matrix.h:404
Matrix operator-(const Vector3 &t) const
Definition: matrix.h:561
constexpr Vector4 operator*(const Vector4 &v) const
Definition: matrix.h:567
static Vector2 CosSin(Radians radians)
Definition: matrix.h:685
constexpr bool operator!=(const Matrix &m) const
Definition: matrix.h:550
static Matrix MakePerspective(Radians fov_y, Scalar aspect_ratio, Scalar z_near, Scalar z_far)
Definition: matrix.h:642
constexpr Point operator*(const Point &v) const
Definition: matrix.h:588
constexpr Vector3 operator*(const Vector3 &v) const
Definition: matrix.h:574
constexpr Vector3 TransformDirection(const Vector3 &v) const
Definition: matrix.h:613
static constexpr Matrix MakeRow(Scalar m0, Scalar m1, Scalar m2, Scalar m3, Scalar m4, Scalar m5, Scalar m6, Scalar m7, Scalar m8, Scalar m9, Scalar m10, Scalar m11, Scalar m12, Scalar m13, Scalar m14, Scalar m15)
Definition: matrix.h:83
Vector3 GetScale() const
Definition: matrix.h:394
static constexpr Matrix MakeSkew(Scalar sx, Scalar sy)
Definition: matrix.h:127
constexpr Quad Transform(const Quad &quad) const
Definition: matrix.h:623
constexpr bool operator==(const Matrix &m) const
Definition: matrix.h:541
constexpr Matrix Scale(const Vector3 &s) const
Definition: matrix.h:275
constexpr Vector3 TransformHomogenous(const Point &v) const
Definition: matrix.h:601
static constexpr Matrix MakeTranslateScale(const Vector3 &s, const Vector3 &t)
Definition: matrix.h:113
Scalar e[4][4]
Definition: matrix.h:40
static Matrix MakeRotationZ(Radians r)
Definition: matrix.h:223
std::optional< std::pair< Scalar, Scalar > > GetScales2D() const
Compute the two non-negative scales applied by this matrix to 2D coordinates and return them as an op...
Definition: matrix.cc:363
std::optional< Scalar > GetMaxScale2D() const
Return the smaller of the two non-negative scales that will be applied to 2D coordinates by this matr...
Definition: matrix.h:380
static Matrix MakeRotation(Radians radians, const Vector4 &r)
Definition: matrix.h:161
static constexpr Matrix MakePerspective(Radians fov_y, TSize< T > size, Scalar z_near, Scalar z_far)
Definition: matrix.h:660
Scalar GetDeterminant() const
Definition: matrix.cc:164
constexpr bool HasPerspective() const
Definition: matrix.h:418
static constexpr Matrix MakeScale(const Vector3 &s)
Definition: matrix.h:104
static Matrix MakeLookAt(Vector3 position, Vector3 target, Vector3 up)
Definition: matrix.h:668
constexpr Vector4 TransformDirection(const Vector4 &v) const
Definition: matrix.h:607
constexpr Vector3 GetBasisX() const
Definition: matrix.h:388
bool Equals(const Matrix &matrix, Scalar epsilon=1e-5f) const
Definition: matrix.h:520
constexpr Matrix To3x3() const
Definition: matrix.h:252
constexpr bool IsAligned2D(Scalar tolerance=0) const
Definition: matrix.h:424
static Matrix MakeRotation(Quaternion q)
Definition: matrix.h:136
constexpr Matrix Transpose() const
Definition: matrix.h:306
Scalar GetMaxBasisLengthXY() const
Return the maximum scale applied specifically to either the X axis or Y axis unit vectors (the bases)...
Definition: matrix.h:328
static Matrix MakeRotationX(Radians r)
Definition: matrix.h:193
Scalar radians
Definition: scalar.h:45
Type height
Definition: size.h:29
Type width
Definition: size.h:28
Vector3 Normalize() const
Definition: vector.h:49
constexpr Vector3 Cross(const Vector3 &other) const
Definition: vector.h:62
constexpr Scalar Dot(const Vector3 &other) const
Definition: vector.h:54
Scalar GetLength() const
Definition: vector.h:47
bool IsFinite() const
Definition: vector.h:258
Vector4 Normalize() const
Definition: vector.h:263