Flutter Impeller
rect.h
Go to the documentation of this file.
1 // Copyright 2013 The Flutter Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef FLUTTER_IMPELLER_GEOMETRY_RECT_H_
6 #define FLUTTER_IMPELLER_GEOMETRY_RECT_H_
7 
8 #include <array>
9 #include <optional>
10 #include <ostream>
11 #include <vector>
12 
13 #include "fml/logging.h"
18 #include "impeller/geometry/size.h"
19 
20 namespace impeller {
21 
22 #define ONLY_ON_FLOAT_M(Modifiers, Return) \
23  template <typename U = T> \
24  Modifiers std::enable_if_t<std::is_floating_point_v<U>, Return>
25 #define ONLY_ON_FLOAT(Return) DL_ONLY_ON_FLOAT_M(, Return)
26 
27 /// Templated struct for holding an axis-aligned rectangle.
28 ///
29 /// Rectangles are defined as 4 axis-aligned edges that might contain
30 /// space. They can be viewed as 2 X coordinates that define the
31 /// left and right edges and 2 Y coordinates that define the top and
32 /// bottom edges; or they can be viewed as an origin and horizontal
33 /// and vertical dimensions (width and height).
34 ///
35 /// When the left and right edges are equal or reversed (right <= left)
36 /// or the top and bottom edges are equal or reversed (bottom <= top),
37 /// the rectangle is considered empty. Considering the rectangle in XYWH
38 /// form, the width and/or the height would be negative or zero. Such
39 /// reversed/empty rectangles contain no space and act as such in the
40 /// methods that operate on them (Intersection, Union, IntersectsWithRect,
41 /// Contains, Cutout, etc.)
42 ///
43 /// Rectangles cannot be modified by any method and a new value can only
44 /// be stored into an existing rect using assignment. This keeps the API
45 /// clean compared to implementations that might have similar methods
46 /// that produce the answer in place, or construct a new object with
47 /// the answer, or place the result in an indicated result object.
48 ///
49 /// Methods that might fail to produce an answer will use |std::optional|
50 /// to indicate that success or failure (see |Intersection| and |CutOut|).
51 /// For convenience, |Intersection| and |Union| both have overloaded
52 /// variants that take |std::optional| arguments and treat them as if
53 /// the argument was an empty rect to allow chaining multiple such methods
54 /// and only needing to check the optional condition of the final result.
55 /// The primary methods also provide |...OrEmpty| overloaded variants that
56 /// translate an empty optional answer into a simple empty rectangle of the
57 /// same type.
58 ///
59 /// Rounding instance methods are not provided as the return value might
60 /// be wanted as another floating point rectangle or sometimes as an integer
61 /// rectangle. Instead a |RoundOut| factory, defined only for floating point
62 /// input rectangles, is provided to provide control over the result type.
63 ///
64 /// NaN and Infinity values
65 ///
66 /// Constructing an LTRB rectangle using Infinity values should work as
67 /// expected with either 0 or +Infinity returned as dimensions depending on
68 /// which side the Infinity values are on and the sign.
69 ///
70 /// Constructing an XYWH rectangle using Infinity values will usually
71 /// not work if the math requires the object to compute a right or bottom
72 /// edge from ([xy] -Infinity + [wh] +Infinity). Other combinations might
73 /// work.
74 ///
75 /// The special factory |MakeMaximum| is provided to construct a rectangle
76 /// of the indicated coordinate type that covers all finite coordinates.
77 /// It does not use infinity values, but rather the largest finite values
78 /// to avoid math that might produce a NaN value from various getters.
79 ///
80 /// Any rectangle that is constructed with, or computed to have a NaN value
81 /// will be considered the same as any empty rectangle.
82 ///
83 /// Empty Rectangle canonical results summary:
84 ///
85 /// Union will ignore any empty rects and return the other rect
86 /// Intersection will return nullopt if either rect is empty
87 /// IntersectsWithRect will return false if either rect is empty
88 /// Cutout will return the source rect if the argument is empty
89 /// Cutout will return nullopt if the source rectangle is empty
90 /// Contains(Point) will return false if the source rectangle is empty
91 /// Contains(Rect) will return false if the source rectangle is empty
92 /// Contains(Rect) will otherwise return true if the argument is empty
93 /// Specifically, EmptyRect.Contains(EmptyRect) returns false
94 ///
95 /// ---------------
96 /// Special notes on problems using the XYWH form of specifying rectangles:
97 ///
98 /// It is possible to have integer rectangles whose dimensions exceed
99 /// the maximum number that their coordinates can represent since
100 /// (MAX_INT - MIN_INT) overflows the representable positive numbers.
101 /// Floating point rectangles technically have a similar issue in that
102 /// overflow can occur, but it will be automatically converted into
103 /// either an infinity, or a finite-overflow value and still be
104 /// representable, just with little to no precision.
105 ///
106 /// Secondly, specifying a rectangle using XYWH leads to cases where the
107 /// math for (x+w) and/or (y+h) are also beyond the maximum representable
108 /// coordinates. For N-bit integer rectangles declared as XYWH, the
109 /// maximum right coordinate will require N+1 signed bits which cannot be
110 /// stored in storage that uses N-bit integers.
111 ///
112 /// Saturated math is used when constructing a rectangle from XYWH values
113 /// and when returning the dimensions of the rectangle. Constructing an
114 /// integer rectangle from values such that xy + wh is beyond the range
115 /// of the integer type will place the right or bottom edges at the maximum
116 /// value for the integer type. Similarly, constructing an integer rectangle
117 /// such that the distance from the left to the right (or top to bottom) is
118 /// greater than the range of the integer type will simply return the
119 /// maximum integer value as the dimension. Floating point rectangles are
120 /// naturally saturated by the rules of IEEE arithmetic.
121 template <class T>
122 struct TRect {
123  private:
124  using Type = T;
125 
126  public:
127  constexpr TRect() : left_(0), top_(0), right_(0), bottom_(0) {}
128 
129  constexpr static TRect MakeLTRB(Type left,
130  Type top,
131  Type right,
132  Type bottom) {
133  return TRect(left, top, right, bottom);
134  }
135 
136  constexpr static TRect MakeXYWH(Type x, Type y, Type width, Type height) {
137  return TRect(x, y, saturated::Add(x, width), saturated::Add(y, height));
138  }
139 
140  constexpr static TRect MakeWH(Type width, Type height) {
141  return TRect(0, 0, width, height);
142  }
143 
144  constexpr static TRect MakeOriginSize(const TPoint<Type>& origin,
145  const TSize<Type>& size) {
146  return MakeXYWH(origin.x, origin.y, size.width, size.height);
147  }
148 
149  template <class U>
150  constexpr static TRect MakeSize(const TSize<U>& size) {
151  return TRect(0.0, 0.0, size.width, size.height);
152  }
153 
154  /// Construct a floating point rect |Rect| from another Rect of a
155  /// potentially different storage type (eg. |IRect|).
156  template <class U, class FT = T>
157  constexpr static std::enable_if_t<std::is_floating_point_v<FT>, TRect> Make(
158  const TRect<U>& rect) {
159  return MakeLTRB(
160  static_cast<FT>(rect.GetLeft()), static_cast<FT>(rect.GetTop()),
161  static_cast<FT>(rect.GetRight()), static_cast<FT>(rect.GetBottom()));
162  }
163 
164  template <typename U>
165  constexpr static std::optional<TRect> MakePointBounds(const U& value) {
166  return MakePointBounds(value.begin(), value.end());
167  }
168 
169  template <typename PointIter>
170  constexpr static std::optional<TRect> MakePointBounds(const PointIter first,
171  const PointIter last) {
172  if (first == last) {
173  return std::nullopt;
174  }
175  auto left = first->x;
176  auto top = first->y;
177  auto right = first->x;
178  auto bottom = first->y;
179  for (auto it = first + 1; it < last; ++it) {
180  left = std::min(left, it->x);
181  top = std::min(top, it->y);
182  right = std::max(right, it->x);
183  bottom = std::max(bottom, it->y);
184  }
185  return TRect::MakeLTRB(left, top, right, bottom);
186  }
187 
188  [[nodiscard]] constexpr static TRect MakeMaximum() {
189  return TRect::MakeLTRB(std::numeric_limits<Type>::lowest(),
190  std::numeric_limits<Type>::lowest(),
191  std::numeric_limits<Type>::max(),
192  std::numeric_limits<Type>::max());
193  }
194 
195  [[nodiscard]] constexpr bool operator==(const TRect& r) const {
196  return left_ == r.left_ && //
197  top_ == r.top_ && //
198  right_ == r.right_ && //
199  bottom_ == r.bottom_;
200  }
201 
202  [[nodiscard]] constexpr TRect Scale(Type scale) const {
203  return TRect(left_ * scale, //
204  top_ * scale, //
205  right_ * scale, //
206  bottom_ * scale);
207  }
208 
209  [[nodiscard]] constexpr TRect Scale(Type scale_x, Type scale_y) const {
210  return TRect(left_ * scale_x, //
211  top_ * scale_y, //
212  right_ * scale_x, //
213  bottom_ * scale_y);
214  }
215 
216  [[nodiscard]] constexpr TRect Scale(TPoint<T> scale) const {
217  return Scale(scale.x, scale.y);
218  }
219 
220  [[nodiscard]] constexpr TRect Scale(TSize<T> scale) const {
221  return Scale(scale.width, scale.height);
222  }
223 
224  /// @brief Returns true iff the provided point |p| is inside the
225  /// half-open interior of this rectangle.
226  ///
227  /// For purposes of containment, a rectangle contains points
228  /// along the top and left edges but not points along the
229  /// right and bottom edges so that a point is only ever
230  /// considered inside one of two abutting rectangles.
231  [[nodiscard]] constexpr bool Contains(const TPoint<Type>& p) const {
232  return !this->IsEmpty() && //
233  p.x >= left_ && //
234  p.y >= top_ && //
235  p.x < right_ && //
236  p.y < bottom_;
237  }
238 
239  /// @brief Returns true iff the provided point |p| is inside the
240  /// closed-range interior of this rectangle.
241  ///
242  /// Unlike the regular |Contains(TPoint)| method, this method
243  /// considers all points along the boundary of the rectangle
244  /// to be contained within the rectangle - useful for testing
245  /// if vertices that define a filled shape would carry the
246  /// interior of that shape outside the bounds of the rectangle.
247  /// Since both geometries are defining half-open spaces, their
248  /// defining geometry needs to consider their boundaries to
249  /// be equivalent with respect to interior and exterior.
250  [[nodiscard]] constexpr bool ContainsInclusive(const TPoint<Type>& p) const {
251  return !this->IsEmpty() && //
252  p.x >= left_ && //
253  p.y >= top_ && //
254  p.x <= right_ && //
255  p.y <= bottom_;
256  }
257 
258  /// @brief Returns true iff this rectangle is not empty and it also
259  /// contains every point considered inside the provided
260  /// rectangle |o| (as determined by |Contains(TPoint)|).
261  ///
262  /// This is similar to a definition where the result is true iff
263  /// the union of the two rectangles is equal to this rectangle,
264  /// ignoring precision issues with performing those operations
265  /// and assuming that empty rectangles are never equal.
266  ///
267  /// An empty rectangle can contain no other rectangle.
268  ///
269  /// An empty rectangle is, however, contained within any
270  /// other non-empy rectangle as the set of points it contains
271  /// is an empty set and so there are no points to fail the
272  /// containment criteria.
273  [[nodiscard]] constexpr bool Contains(const TRect& o) const {
274  return !this->IsEmpty() && //
275  (o.IsEmpty() || (o.left_ >= left_ && //
276  o.top_ >= top_ && //
277  o.right_ <= right_ && //
278  o.bottom_ <= bottom_));
279  }
280 
281  /// @brief Returns true if all of the fields of this floating point
282  /// rectangle are finite.
283  ///
284  /// Note that the results of |GetWidth()| and |GetHeight()| may
285  /// still be infinite due to overflow even if the fields themselves
286  /// are finite.
287  ONLY_ON_FLOAT_M([[nodiscard]] constexpr, bool)
288  IsFinite() const {
289  return std::isfinite(left_) && //
290  std::isfinite(top_) && //
291  std::isfinite(right_) && //
292  std::isfinite(bottom_);
293  }
294 
295  /// @brief Returns true if either of the width or height are 0, negative,
296  /// or NaN.
297  [[nodiscard]] constexpr bool IsEmpty() const {
298  // Computing the non-empty condition and negating the result causes any
299  // NaN value to return true - i.e. is considered empty.
300  return !(left_ < right_ && top_ < bottom_);
301  }
302 
303  /// @brief Returns true if width and height are equal and neither is NaN.
304  [[nodiscard]] constexpr bool IsSquare() const {
305  // empty rectangles can technically be "square", but would be
306  // misleading to most callers. Using |IsEmpty| also prevents
307  // "non-empty and non-overflowing" computations from happening
308  // to be equal to "empty and overflowing" results.
309  // (Consider LTRB(10, 15, MAX-2, MIN+2) which is empty, but both
310  // w/h subtractions equal "5").
311  return !IsEmpty() && (right_ - left_) == (bottom_ - top_);
312  }
313 
314  [[nodiscard]] constexpr bool IsMaximum() const {
315  return *this == MakeMaximum();
316  }
317 
318  /// @brief Returns the upper left corner of the rectangle as specified
319  /// by the left/top or x/y values when it was constructed.
320  [[nodiscard]] constexpr TPoint<Type> GetOrigin() const {
321  return {left_, top_};
322  }
323 
324  /// @brief Returns the size of the rectangle which may be negative in
325  /// either width or height and may have been clipped to the
326  /// maximum integer values for integer rects whose size overflows.
327  [[nodiscard]] constexpr TSize<Type> GetSize() const {
328  return {GetWidth(), GetHeight()};
329  }
330 
331  /// @brief Returns the X coordinate of the upper left corner, equivalent
332  /// to |GetOrigin().x|
333  [[nodiscard]] constexpr Type GetX() const { return left_; }
334 
335  /// @brief Returns the Y coordinate of the upper left corner, equivalent
336  /// to |GetOrigin().y|
337  [[nodiscard]] constexpr Type GetY() const { return top_; }
338 
339  /// @brief Returns the width of the rectangle, equivalent to
340  /// |GetSize().width|
341  [[nodiscard]] constexpr Type GetWidth() const {
342  return saturated::Sub(right_, left_);
343  }
344 
345  /// @brief Returns the height of the rectangle, equivalent to
346  /// |GetSize().height|
347  [[nodiscard]] constexpr Type GetHeight() const {
348  return saturated::Sub(bottom_, top_);
349  }
350 
351  [[nodiscard]] constexpr auto GetLeft() const { return left_; }
352 
353  [[nodiscard]] constexpr auto GetTop() const { return top_; }
354 
355  [[nodiscard]] constexpr auto GetRight() const { return right_; }
356 
357  [[nodiscard]] constexpr auto GetBottom() const { return bottom_; }
358 
359  [[nodiscard]] constexpr TPoint<T> GetLeftTop() const { //
360  return {left_, top_};
361  }
362 
363  [[nodiscard]] constexpr TPoint<T> GetRightTop() const {
364  return {right_, top_};
365  }
366 
367  [[nodiscard]] constexpr TPoint<T> GetLeftBottom() const {
368  return {left_, bottom_};
369  }
370 
371  [[nodiscard]] constexpr TPoint<T> GetRightBottom() const {
372  return {right_, bottom_};
373  }
374 
375  /// @brief Get the area of the rectangle, equivalent to |GetSize().Area()|
376  [[nodiscard]] constexpr T Area() const {
377  // TODO(141710): Use saturated math to avoid overflow.
378  return IsEmpty() ? 0 : (right_ - left_) * (bottom_ - top_);
379  }
380 
381  /// @brief Get the center point as a |Point|.
382  [[nodiscard]] constexpr Point GetCenter() const {
383  return {saturated::AverageScalar(left_, right_),
384  saturated::AverageScalar(top_, bottom_)};
385  }
386 
387  [[nodiscard]] constexpr std::array<T, 4> GetLTRB() const {
388  return {left_, top_, right_, bottom_};
389  }
390 
391  /// @brief Get the x, y coordinates of the origin and the width and
392  /// height of the rectangle in an array.
393  [[nodiscard]] constexpr std::array<T, 4> GetXYWH() const {
394  return {left_, top_, GetWidth(), GetHeight()};
395  }
396 
397  /// @brief Get a version of this rectangle that has a non-negative size.
398  [[nodiscard]] constexpr TRect GetPositive() const {
399  if (!IsEmpty()) {
400  return *this;
401  }
402  return {
403  std::min(left_, right_),
404  std::min(top_, bottom_),
405  std::max(left_, right_),
406  std::max(top_, bottom_),
407  };
408  }
409 
410  /// @brief Get the points that represent the 4 corners of this rectangle
411  /// in a Z order that is compatible with triangle strips or a set
412  /// of all zero points if the rectangle is empty.
413  /// The order is: Top left, top right, bottom left, bottom right.
414  [[nodiscard]] constexpr std::array<TPoint<T>, 4> GetPoints() const {
415  if (IsEmpty()) {
416  return {};
417  }
418  return {
419  TPoint{left_, top_},
420  TPoint{right_, top_},
421  TPoint{left_, bottom_},
422  TPoint{right_, bottom_},
423  };
424  }
425 
426  [[nodiscard]] constexpr std::array<TPoint<T>, 4> GetTransformedPoints(
427  const Matrix& transform) const {
428  auto points = GetPoints();
429  for (size_t i = 0; i < points.size(); i++) {
430  points[i] = transform * points[i];
431  }
432  return points;
433  }
434 
435  /// @brief Creates a new bounding box that contains this transformed
436  /// rectangle, clipped against the near clipping plane if
437  /// necessary.
438  [[nodiscard]] constexpr TRect TransformAndClipBounds(
439  const Matrix& transform) const {
440  if (!transform.HasPerspective2D()) {
441  return TransformBounds(transform);
442  }
443 
444  if (IsEmpty()) {
445  return {};
446  }
447 
448  auto ul = transform.TransformHomogenous({left_, top_});
449  auto ur = transform.TransformHomogenous({right_, top_});
450  auto ll = transform.TransformHomogenous({left_, bottom_});
451  auto lr = transform.TransformHomogenous({right_, bottom_});
452 
453  // It can probably be proven that we only ever have 5 points at most
454  // which happens when only 1 corner is clipped and we get 2 points
455  // in return for it as we interpolate against its neighbors.
456  Point points[8];
457  int index = 0;
458 
459  // Process (clip and interpolate) each point against its 2 neighbors:
460  // left, pt, right
461  index = ClipAndInsert(points, index, ll, ul, ur);
462  index = ClipAndInsert(points, index, ul, ur, lr);
463  index = ClipAndInsert(points, index, ur, lr, ll);
464  index = ClipAndInsert(points, index, lr, ll, ul);
465 
466  auto bounds = TRect::MakePointBounds(points, points + index);
467  return bounds.value_or(TRect{});
468  }
469 
470  /// @brief Creates a new bounding box that contains this transformed
471  /// rectangle.
472  [[nodiscard]] constexpr TRect TransformBounds(const Matrix& transform) const {
473  if (IsEmpty()) {
474  return {};
475  }
477  auto bounds = TRect::MakePointBounds(points.begin(), points.end());
478  if (bounds.has_value()) {
479  return bounds.value();
480  }
481  FML_UNREACHABLE();
482  }
483 
484  /// @brief Constructs a Matrix that will map all points in the coordinate
485  /// space of the rectangle into a new normalized coordinate space
486  /// where the upper left corner of the rectangle maps to (0, 0)
487  /// and the lower right corner of the rectangle maps to (1, 1).
488  ///
489  /// Empty and non-finite rectangles will return a zero-scaling
490  /// transform that maps all points to (0, 0).
491  [[nodiscard]] constexpr Matrix GetNormalizingTransform() const {
492  if (!IsEmpty()) {
493  Scalar sx = 1.0 / GetWidth();
494  Scalar sy = 1.0 / GetHeight();
495  Scalar tx = left_ * -sx;
496  Scalar ty = top_ * -sy;
497 
498  // Exclude NaN and infinities and either scale underflowing to zero
499  if (sx != 0.0 && sy != 0.0 && 0.0 * sx * sy * tx * ty == 0.0) {
500  // clang-format off
501  return Matrix( sx, 0.0f, 0.0f, 0.0f,
502  0.0f, sy, 0.0f, 0.0f,
503  0.0f, 0.0f, 1.0f, 0.0f,
504  tx, ty, 0.0f, 1.0f);
505  // clang-format on
506  }
507  }
508 
509  // Map all coordinates to the origin.
510  return Matrix::MakeScale({0.0f, 0.0f, 1.0f});
511  }
512 
513  [[nodiscard]] constexpr TRect Union(const TRect& o) const {
514  if (IsEmpty()) {
515  return o;
516  }
517  if (o.IsEmpty()) {
518  return *this;
519  }
520  return {
521  std::min(left_, o.left_),
522  std::min(top_, o.top_),
523  std::max(right_, o.right_),
524  std::max(bottom_, o.bottom_),
525  };
526  }
527 
528  [[nodiscard]] constexpr std::optional<TRect> Intersection(
529  const TRect& o) const {
530  if (IntersectsWithRect(o)) {
531  return TRect{
532  std::max(left_, o.left_),
533  std::max(top_, o.top_),
534  std::min(right_, o.right_),
535  std::min(bottom_, o.bottom_),
536  };
537  } else {
538  return std::nullopt;
539  }
540  }
541 
542  [[nodiscard]] constexpr TRect IntersectionOrEmpty(const TRect& o) const {
543  return Intersection(o).value_or(TRect());
544  }
545 
546  [[nodiscard]] constexpr bool IntersectsWithRect(const TRect& o) const {
547  return !IsEmpty() && //
548  !o.IsEmpty() && //
549  left_ < o.right_ && //
550  top_ < o.bottom_ && //
551  right_ > o.left_ && //
552  bottom_ > o.top_;
553  }
554 
555  /// @brief Returns the new boundary rectangle that would result from this
556  /// rectangle being cut out by the specified rectangle.
557  [[nodiscard]] constexpr std::optional<TRect<T>> Cutout(const TRect& o) const {
558  if (IsEmpty()) {
559  // This test isn't just a short-circuit, it also prevents the concise
560  // math below from returning the wrong answer on empty rects.
561  // Once we know that this rectangle is not empty, the math below can
562  // only succeed in computing a value if o is also non-empty and non-nan.
563  // Otherwise, the method returns *this by default.
564  return std::nullopt;
565  }
566 
567  const auto& [a_left, a_top, a_right, a_bottom] = GetLTRB(); // Source rect.
568  const auto& [b_left, b_top, b_right, b_bottom] = o.GetLTRB(); // Cutout.
569  if (b_left <= a_left && b_right >= a_right) {
570  if (b_top <= a_top && b_bottom >= a_bottom) {
571  // Full cutout.
572  return std::nullopt;
573  }
574  if (b_top <= a_top && b_bottom > a_top) {
575  // Cuts off the top.
576  return TRect::MakeLTRB(a_left, b_bottom, a_right, a_bottom);
577  }
578  if (b_bottom >= a_bottom && b_top < a_bottom) {
579  // Cuts off the bottom.
580  return TRect::MakeLTRB(a_left, a_top, a_right, b_top);
581  }
582  }
583  if (b_top <= a_top && b_bottom >= a_bottom) {
584  if (b_left <= a_left && b_right > a_left) {
585  // Cuts off the left.
586  return TRect::MakeLTRB(b_right, a_top, a_right, a_bottom);
587  }
588  if (b_right >= a_right && b_left < a_right) {
589  // Cuts off the right.
590  return TRect::MakeLTRB(a_left, a_top, b_left, a_bottom);
591  }
592  }
593 
594  return *this;
595  }
596 
597  [[nodiscard]] constexpr TRect CutoutOrEmpty(const TRect& o) const {
598  return Cutout(o).value_or(TRect());
599  }
600 
601  /// @brief Returns a new rectangle translated by the given offset.
602  [[nodiscard]] constexpr TRect<T> Shift(T dx, T dy) const {
603  return {
604  saturated::Add(left_, dx), //
605  saturated::Add(top_, dy), //
606  saturated::Add(right_, dx), //
607  saturated::Add(bottom_, dy), //
608  };
609  }
610 
611  /// @brief Returns a new rectangle translated by the given offset.
612  [[nodiscard]] constexpr TRect<T> Shift(TPoint<T> offset) const {
613  return Shift(offset.x, offset.y);
614  }
615 
616  /// @brief Returns a rectangle with expanded edges. Negative expansion
617  /// results in shrinking.
618  [[nodiscard]] constexpr TRect<T> Expand(T left,
619  T top,
620  T right,
621  T bottom) const {
622  return {
623  saturated::Sub(left_, left), //
624  saturated::Sub(top_, top), //
625  saturated::Add(right_, right), //
626  saturated::Add(bottom_, bottom), //
627  };
628  }
629 
630  /// @brief Returns a rectangle with expanded edges in all directions.
631  /// Negative expansion results in shrinking.
632  [[nodiscard]] constexpr TRect<T> Expand(T amount) const {
633  return {
634  saturated::Sub(left_, amount), //
635  saturated::Sub(top_, amount), //
636  saturated::Add(right_, amount), //
637  saturated::Add(bottom_, amount), //
638  };
639  }
640 
641  /// @brief Returns a rectangle with expanded edges in all directions.
642  /// Negative expansion results in shrinking.
643  [[nodiscard]] constexpr TRect<T> Expand(T horizontal_amount,
644  T vertical_amount) const {
645  return {
646  saturated::Sub(left_, horizontal_amount), //
647  saturated::Sub(top_, vertical_amount), //
648  saturated::Add(right_, horizontal_amount), //
649  saturated::Add(bottom_, vertical_amount), //
650  };
651  }
652 
653  /// @brief Returns a rectangle with expanded edges in all directions.
654  /// Negative expansion results in shrinking.
655  [[nodiscard]] constexpr TRect<T> Expand(TPoint<T> amount) const {
656  return Expand(amount.x, amount.y);
657  }
658 
659  /// @brief Returns a rectangle with expanded edges in all directions.
660  /// Negative expansion results in shrinking.
661  [[nodiscard]] constexpr TRect<T> Expand(TSize<T> amount) const {
662  return Expand(amount.width, amount.height);
663  }
664 
665  /// @brief Returns a new rectangle that represents the projection of the
666  /// source rectangle onto this rectangle. In other words, the source
667  /// rectangle is redefined in terms of the coordinate space of this
668  /// rectangle.
669  [[nodiscard]] constexpr TRect<T> Project(TRect<T> source) const {
670  if (IsEmpty()) {
671  return {};
672  }
673  return source.Shift(-left_, -top_)
674  .Scale(1.0 / static_cast<Scalar>(GetWidth()),
675  1.0 / static_cast<Scalar>(GetHeight()));
676  }
677 
678  ONLY_ON_FLOAT_M([[nodiscard]] constexpr static, TRect)
679  RoundOut(const TRect<U>& r) {
680  return TRect::MakeLTRB(saturated::Cast<U, Type>(floor(r.GetLeft())),
681  saturated::Cast<U, Type>(floor(r.GetTop())),
682  saturated::Cast<U, Type>(ceil(r.GetRight())),
683  saturated::Cast<U, Type>(ceil(r.GetBottom())));
684  }
685 
686  ONLY_ON_FLOAT_M([[nodiscard]] constexpr static, TRect)
687  RoundIn(const TRect<U>& r) {
688  return TRect::MakeLTRB(saturated::Cast<U, Type>(ceil(r.GetLeft())),
689  saturated::Cast<U, Type>(ceil(r.GetTop())),
690  saturated::Cast<U, Type>(floor(r.GetRight())),
691  saturated::Cast<U, Type>(floor(r.GetBottom())));
692  }
693 
694  ONLY_ON_FLOAT_M([[nodiscard]] constexpr static, TRect)
695  Round(const TRect<U>& r) {
696  return TRect::MakeLTRB(saturated::Cast<U, Type>(round(r.GetLeft())),
697  saturated::Cast<U, Type>(round(r.GetTop())),
698  saturated::Cast<U, Type>(round(r.GetRight())),
699  saturated::Cast<U, Type>(round(r.GetBottom())));
700  }
701 
702  [[nodiscard]] constexpr static TRect Union(const TRect& a,
703  const std::optional<TRect> b) {
704  return b.has_value() ? a.Union(b.value()) : a;
705  }
706 
707  [[nodiscard]] constexpr static TRect Union(const std::optional<TRect> a,
708  const TRect& b) {
709  return a.has_value() ? a->Union(b) : b;
710  }
711 
712  [[nodiscard]] constexpr static std::optional<TRect> Union(
713  const std::optional<TRect> a,
714  const std::optional<TRect> b) {
715  return a.has_value() ? Union(a.value(), b) : b;
716  }
717 
718  [[nodiscard]] constexpr static std::optional<TRect> Intersection(
719  const TRect& a,
720  const std::optional<TRect> b) {
721  return b.has_value() ? a.Intersection(b.value()) : a;
722  }
723 
724  [[nodiscard]] constexpr static std::optional<TRect> Intersection(
725  const std::optional<TRect> a,
726  const TRect& b) {
727  return a.has_value() ? a->Intersection(b) : b;
728  }
729 
730  [[nodiscard]] constexpr static std::optional<TRect> Intersection(
731  const std::optional<TRect> a,
732  const std::optional<TRect> b) {
733  return a.has_value() ? Intersection(a.value(), b) : b;
734  }
735 
736  private:
737  constexpr TRect(Type left, Type top, Type right, Type bottom)
738  : left_(left), top_(top), right_(right), bottom_(bottom) {}
739 
740  Type left_;
741  Type top_;
742  Type right_;
743  Type bottom_;
744 
745  static constexpr Scalar kMinimumHomogenous = 1.0f / (1 << 14);
746 
747  // Clip p against the near clipping plane (W = kMinimumHomogenous)
748  // and interpolate a crossing point against the nearby neighbors
749  // left and right if p is clipped and either of them is not.
750  // This method can produce 0, 1, or 2 points per call depending on
751  // how many of the points are clipped.
752  // 0 - all points are clipped
753  // 1 - p is unclipped OR
754  // p is clipped and exactly one of the neighbors is not
755  // 2 - p is clipped and both neighbors are not
756  static constexpr int ClipAndInsert(Point clipped[],
757  int index,
758  const Vector3& left,
759  const Vector3& p,
760  const Vector3& right) {
761  if (p.z >= kMinimumHomogenous) {
762  clipped[index++] = {p.x / p.z, p.y / p.z};
763  } else {
764  index = InterpolateAndInsert(clipped, index, p, left);
765  index = InterpolateAndInsert(clipped, index, p, right);
766  }
767  return index;
768  }
769 
770  // Interpolate (a clipped) point p against one of its neighbors
771  // and insert the point into the array where the line between them
772  // veers from clipped space to unclipped, if such a point exists.
773  static constexpr int InterpolateAndInsert(Point clipped[],
774  int index,
775  const Vector3& p,
776  const Vector3& neighbor) {
777  if (neighbor.z >= kMinimumHomogenous) {
778  auto t = (kMinimumHomogenous - p.z) / (neighbor.z - p.z);
779  clipped[index++] = {
780  (t * p.x + (1.0f - t) * neighbor.x) / kMinimumHomogenous,
781  (t * p.y + (1.0f - t) * neighbor.y) / kMinimumHomogenous,
782  };
783  }
784  return index;
785  }
786 };
787 
791 using IRect = IRect64;
792 
793 #undef ONLY_ON_FLOAT
794 #undef ONLY_ON_FLOAT_M
795 
796 } // namespace impeller
797 
798 namespace std {
799 
800 template <class T>
801 inline std::ostream& operator<<(std::ostream& out,
802  const impeller::TRect<T>& r) {
803  out << "(" << r.GetLeftTop() << " => " << r.GetRightBottom() << ")";
804  return out;
805 }
806 
807 } // namespace std
808 
809 #endif // FLUTTER_IMPELLER_GEOMETRY_RECT_H_
int32_t value
int32_t x
float Scalar
Definition: scalar.h:19
TPoint< Scalar > Point
Definition: point.h:327
TRect< int64_t > IRect64
Definition: rect.h:790
Definition: comparable.h:95
std::ostream & operator<<(std::ostream &out, const impeller::Arc &a)
Definition: arc.h:141
#define ONLY_ON_FLOAT_M(Modifiers, Return)
Definition: rect.h:22
A 4x4 matrix using column-major storage.
Definition: matrix.h:37
static constexpr Matrix MakeScale(const Vector3 &s)
Definition: matrix.h:104
constexpr TRect< T > Expand(T left, T top, T right, T bottom) const
Returns a rectangle with expanded edges. Negative expansion results in shrinking.
Definition: rect.h:618
constexpr auto GetBottom() const
Definition: rect.h:357
constexpr Type GetY() const
Returns the Y coordinate of the upper left corner, equivalent to |GetOrigin().y|.
Definition: rect.h:337
constexpr TRect TransformBounds(const Matrix &transform) const
Creates a new bounding box that contains this transformed rectangle.
Definition: rect.h:472
constexpr TRect< T > Project(TRect< T > source) const
Returns a new rectangle that represents the projection of the source rectangle onto this rectangle....
Definition: rect.h:669
constexpr bool ContainsInclusive(const TPoint< Type > &p) const
Returns true iff the provided point |p| is inside the closed-range interior of this rectangle.
Definition: rect.h:250
constexpr auto GetTop() const
Definition: rect.h:353
constexpr Type GetHeight() const
Returns the height of the rectangle, equivalent to |GetSize().height|.
Definition: rect.h:347
constexpr TPoint< Type > GetOrigin() const
Returns the upper left corner of the rectangle as specified by the left/top or x/y values when it was...
Definition: rect.h:320
constexpr TRect Scale(TPoint< T > scale) const
Definition: rect.h:216
constexpr TRect< T > Expand(TPoint< T > amount) const
Returns a rectangle with expanded edges in all directions. Negative expansion results in shrinking.
Definition: rect.h:655
constexpr bool IsMaximum() const
Definition: rect.h:314
constexpr std::optional< TRect > Intersection(const TRect &o) const
Definition: rect.h:528
constexpr bool IsEmpty() const
Returns true if either of the width or height are 0, negative, or NaN.
Definition: rect.h:297
constexpr T Area() const
Get the area of the rectangle, equivalent to |GetSize().Area()|.
Definition: rect.h:376
constexpr static TRect MakeOriginSize(const TPoint< Type > &origin, const TSize< Type > &size)
Definition: rect.h:144
constexpr bool Contains(const TPoint< Type > &p) const
Returns true iff the provided point |p| is inside the half-open interior of this rectangle.
Definition: rect.h:231
constexpr static TRect Union(const TRect &a, const std::optional< TRect > b)
Definition: rect.h:702
constexpr TRect Union(const TRect &o) const
Definition: rect.h:513
constexpr TRect Scale(Type scale_x, Type scale_y) const
Definition: rect.h:209
constexpr std::array< TPoint< T >, 4 > GetPoints() const
Get the points that represent the 4 corners of this rectangle in a Z order that is compatible with tr...
Definition: rect.h:414
constexpr bool IntersectsWithRect(const TRect &o) const
Definition: rect.h:546
constexpr auto GetLeft() const
Definition: rect.h:351
RoundIn(const TRect< U > &r)
Definition: rect.h:687
constexpr TRect CutoutOrEmpty(const TRect &o) const
Definition: rect.h:597
constexpr static TRect MakeWH(Type width, Type height)
Definition: rect.h:140
constexpr static std::optional< TRect > MakePointBounds(const U &value)
Definition: rect.h:165
constexpr TSize< Type > GetSize() const
Returns the size of the rectangle which may be negative in either width or height and may have been c...
Definition: rect.h:327
constexpr TRect< T > Expand(T horizontal_amount, T vertical_amount) const
Returns a rectangle with expanded edges in all directions. Negative expansion results in shrinking.
Definition: rect.h:643
Round(const TRect< U > &r)
Definition: rect.h:695
RoundOut(const TRect< U > &r)
Definition: rect.h:679
constexpr TRect GetPositive() const
Get a version of this rectangle that has a non-negative size.
Definition: rect.h:398
constexpr TRect Scale(TSize< T > scale) const
Definition: rect.h:220
constexpr Type GetX() const
Returns the X coordinate of the upper left corner, equivalent to |GetOrigin().x|.
Definition: rect.h:333
constexpr auto GetRight() const
Definition: rect.h:355
constexpr bool IsSquare() const
Returns true if width and height are equal and neither is NaN.
Definition: rect.h:304
constexpr static std::optional< TRect > Intersection(const std::optional< TRect > a, const std::optional< TRect > b)
Definition: rect.h:730
constexpr bool Contains(const TRect &o) const
Returns true iff this rectangle is not empty and it also contains every point considered inside the p...
Definition: rect.h:273
IsFinite() const
Returns true if all of the fields of this floating point rectangle are finite.
Definition: rect.h:288
constexpr Matrix GetNormalizingTransform() const
Constructs a Matrix that will map all points in the coordinate space of the rectangle into a new norm...
Definition: rect.h:491
constexpr static std::optional< TRect > Union(const std::optional< TRect > a, const std::optional< TRect > b)
Definition: rect.h:712
constexpr TRect Scale(Type scale) const
Definition: rect.h:202
constexpr static TRect MakeXYWH(Type x, Type y, Type width, Type height)
Definition: rect.h:136
constexpr TPoint< T > GetLeftBottom() const
Definition: rect.h:367
constexpr std::array< TPoint< T >, 4 > GetTransformedPoints(const Matrix &transform) const
Definition: rect.h:426
constexpr TRect TransformAndClipBounds(const Matrix &transform) const
Creates a new bounding box that contains this transformed rectangle, clipped against the near clippin...
Definition: rect.h:438
constexpr static TRect Union(const std::optional< TRect > a, const TRect &b)
Definition: rect.h:707
constexpr TRect< T > Shift(TPoint< T > offset) const
Returns a new rectangle translated by the given offset.
Definition: rect.h:612
constexpr TPoint< T > GetRightTop() const
Definition: rect.h:363
constexpr TRect< T > Expand(T amount) const
Returns a rectangle with expanded edges in all directions. Negative expansion results in shrinking.
Definition: rect.h:632
constexpr static std::optional< TRect > MakePointBounds(const PointIter first, const PointIter last)
Definition: rect.h:170
constexpr TRect< T > Shift(T dx, T dy) const
Returns a new rectangle translated by the given offset.
Definition: rect.h:602
constexpr static TRect MakeSize(const TSize< U > &size)
Definition: rect.h:150
constexpr Type GetWidth() const
Returns the width of the rectangle, equivalent to |GetSize().width|.
Definition: rect.h:341
constexpr TPoint< T > GetRightBottom() const
Definition: rect.h:371
constexpr std::array< T, 4 > GetLTRB() const
Definition: rect.h:387
constexpr static std::enable_if_t< std::is_floating_point_v< FT >, TRect > Make(const TRect< U > &rect)
Definition: rect.h:157
constexpr TRect< T > Expand(TSize< T > amount) const
Returns a rectangle with expanded edges in all directions. Negative expansion results in shrinking.
Definition: rect.h:661
constexpr static std::optional< TRect > Intersection(const TRect &a, const std::optional< TRect > b)
Definition: rect.h:718
constexpr Point GetCenter() const
Get the center point as a |Point|.
Definition: rect.h:382
constexpr TRect IntersectionOrEmpty(const TRect &o) const
Definition: rect.h:542
constexpr TRect()
Definition: rect.h:127
constexpr static std::optional< TRect > Intersection(const std::optional< TRect > a, const TRect &b)
Definition: rect.h:724
constexpr std::optional< TRect< T > > Cutout(const TRect &o) const
Returns the new boundary rectangle that would result from this rectangle being cut out by the specifi...
Definition: rect.h:557
constexpr TPoint< T > GetLeftTop() const
Definition: rect.h:359
constexpr bool operator==(const TRect &r) const
Definition: rect.h:195
constexpr std::array< T, 4 > GetXYWH() const
Get the x, y coordinates of the origin and the width and height of the rectangle in an array.
Definition: rect.h:393
constexpr static TRect MakeLTRB(Type left, Type top, Type right, Type bottom)
Definition: rect.h:129
constexpr static TRect MakeMaximum()
Definition: rect.h:188
Type height
Definition: size.h:29
Type width
Definition: size.h:28
std::vector< Point > points